Index

References in italics are to Figures or Tables

acoustic waves see waves
adaptive resonance theory 246, 247
aerosity concept 319, 327
Amott indices 19
Ampere’s Law 278
Archie’s Law 48, 160, 281, 305–6
artificial neural networks (ANN)
 backpropagation 170–2, 246–7
 implementation 172–4
 use in petrophysical prediction
aspect ratio, effect on wave velocity 135–6
attenuation of waves, see waves
backpropagation neural networks 170–2, 246–7
backscattered electron imaging (BSEI)
 method 49–50
 use in permeability measurement 56–8
bed boundary identification 184
bedding attitude
 in horizontal wellbores
 appearance 349, 351
 estimation 361–2
 in resistivity imaging 5–7
Biot’s theory 131, 132
blocking effects 184
Boltzmann equation 255
borehole images
 horizontal wellbore images 345–7
 acquisition features
 image degradation 361
 keyseating 358–9
 pad contact loss 359–61
 scarring/scratching 358
 toolstick 358
 feature recognition
 bedding 351
 breakout 357
 crossbedding 354–5
 drapes 355–6
 faults 356–7
 fracture 351
 lithological change 351–3
 spatial orientation 349–51
 undulation bedding 355
breakout features, in horizontal wellbores 357
Brent Group
 bulk density 147–9
 correlation of standard variables 193
 gamma ray histograms 226
 logs 188–9
 mineralogy 144
 porosity 150–1
 resistivity histograms 227
 resistivity log 189
 wave velocity logs 94–102
bulk density, see density
bulk modulus, role in modelling wave velocities 92–4
bulls eyes, in horizontal wellbores 355
canonical correlation 211–18
capillary pressure, role in displacement 22, 25–7
capillary tube models
 effect of pore size 303
 hydraulic transport 301–3
Carrara marble, quality factor for P waves 123
Casco granite, aspect ratio/velocity relations 136–8
categorical data 185
cation exchange capacity (CEC) 264
chalcopyrite, prospecting for 287
characteristic analysis 233–4
charge density for mineral surface 254
chargeability 281, 285, 287
chemical modes 142
clay content and wave velocity 87–8, 122
clay minerals
 electrical surface charge 253, 264–5
 surface electrical charge 277
clay volume, artificial neural network predictions 177, 178, 179
clay-sand mixture modelling for wave velocities 88–90
 factors affecting 103–4
 fluid content 102
 frame modulus effects 92–4
 velocity dispersion 90–2
 model testing 94–102
cluster analysis 234–9
Cole model 279
complex resistivity 281
compressional waves see waves
constant phase angle (CPA) response 277–8, 282
contact angle
 distribution 27–9
 role in displacement 21, 22, 23–4
contact resistivity imaging 1
copper, prospecting for 287
core analysis, non-contacting methods see resistivity imaging
correspondence analysis 210–11
coupling factor, effect on wave velocity 135–6
cracks
 effect on tensile strength 107
 effect on wave velocities of 72–84
 experimental induction of 70–2
 relation to rock transport properties 69–70
 cross-flow 319–21
 crossbedding, in horizontal wellbores 354
 crossplots 195–6

Darcy’s Law 48, 300–1
Debye model 279
Debye screening length 255
deductive methodology 182
deformation structures, in horizontal wellbores 355–6
density
 bulk
 use in mineral inversion 146–53
 grain 172, 173, 174, 175
 matrix 141
dielectric constant 278, 279, 280
tensional pressure, effect on velocity 135–6
diffusion
 effective diffusion coefficient 270
 role of tortuosity 307
gas 308–9
 molecular level 307–8
 random walk model 311–13
slip flow factors 310–11
viscosity factors 309–10
use of NMR in studies 316–17
diffusional tortuosity-electrical tortuosity compared 321–4
diffusivity 281
dip
 in horizontal wellbores
 appearance 349, 351
 estimation 361–2
 in resistivity imaging 5–7
direct hydrocarbon indicators (DHI) 87
discontinuities
 characterization of 72–84
 relation to rock transport properties 69–70
discriminant function analysis 223–32
dispersion, role in tortuosity 313–14
dispersion matrix 185–7
drapes, in horizontal wellbores 355–6
Dunlin Formation, wave velocity logs 94–102
Dupuit’s relation 301
effective porosity, artificial neural network predictions 177, 178, 179
elastic wave velocity, effect of clay on 87–8
electric flux density 278
electrical conductivity 327
defined 278
electrical current density 278
electrical current flux
 factors affecting 277
 modelling of 278–81
electrical diffuse layer (EDL) 253, 254
electrical efficiency 327
electrical permittivity 278
electrical properties of surfaces
 models reviewed 278–80
 porous media 261–6
 quartz-electrolyte system 257–61
electrical tortuosity 305–7
diffusional tortuosity compared 321–4
 hydraulic tortuosity compared 324–7
 relation to flow efficiency 327–8
electrically charged double layer 277
electro-osmotic effect 256
electrofacies analysis 182
enclaves
 formation 37
 pore structure study
 2-D observations 39–41
 3-D observations 43
 mineralogy and texture 38–9
 permeability 41–3
Etive Formation
 bulk density by mineral inversion 147–9
 porosity by mineral inversion 150–1
 velocity logs 94–102
Euclidian distance 192

fabric
 relation to fluid flow 1
 relation to tensile strength 119
factor analysis 200–9
faults and faulting
 in horizontal wellbores 356–7
 relation to rock transport properties 69–70
Fick’s Law 307, 322–3
film flow 24
flow efficiency
 electrical 327–8
 hydrodynamic 328–9
fluid content, effect on velocity 135–6
fluid flow, relation to fabric 1
foresets, in horizontal wellbores 354–5
fractal behaviour 278, 284
fractal roughness, role in electrical properties 278, 280
fractures
 in horizontal wellbores 351
 relation to rock transport properties 69–70
free electrolyte 253, 254
fuzzy logic 241–5
galena, prospecting for 287
geological algorithms 247–50
geochronal logging 142
genetic algorithms 247–50
generalized tortuosity 300
grain density, artificial neural network predictions 172, 173, 174
grain size and tensile strength 119
granite 37–43, 136–8
graphite 283, 284, 287
Hagen-Poiseuille equation 301
hierarchical clustering 235–6
Hittorf transport numbers 265–6
Hole 504B, seismic attenuation study 371–3
Hole 807C, ANN petrophysical predictions 174–6
Hole 878A, ANN petrophysical predictions 176–7
hoop tension test 376
Antigorio gneiss 114–17
Penrith Sandstone 380–7
horizontal wellbore, see borehole images
Hough transform 196–7
hydraulic tortuosity 300–5
electrical tortuosity compared 324–7
 relation to flow efficiency 328–9
hydrodynamic tortuosity, see hydraulic tortuosity
icon plots 195, 196
imbibition
 oil 25
 water 24
induced polarization (IP) phenomena 287
 modelling 292–5, 288–95
inductive methodology 182
intrinsic attenuation 368, 369
ionic diffusion 267–8
ionic mobilities 256, 267
ionic sites, surface concentration of 254
joints, relation to rock transport properties 69–70
kaolinization, effect on attenuation 123
kernel density estimation 239–41
keyseating in horizontal wellbores 358–9
Klinkenberg effect 310
Knudsen number 309
Kozeny–Carman equation 302, 330
Kozeny’s equation 301
ladder plots 195
Laplace equation 321
limestone, P wave quality factor 124–5, 127
lithofacies analysis 182
lithological change
 in horizontal wellbores
 appearance 351–3
 significance of 362–4
magma interchange processes 37
magnetic susceptibility by mineral inversion 154–5
Mahalanobis distance 192
matrix density 141
Maxwell’s equation 278, 288
membrane potential 268–70
mercury injection capillary pressure (MICP) method 50–1
use in permeability measurement 54–6
metals, prospecting for 287
microlithic enclaves see enclaves
mineral inversion
 density derived from 146–53
 evaluation 144–5
 porosity derived from 145–51
 theory 142–4
mineralogy
 effect on velocity 135–6
 logging 141–2
 relation to tensile strength 119
minimized probe permeameters (MPP) 11–18
modal and normative mineralogy 142
moire fringes
 analysis of 376–7
 quantification of strain 378–80
 use in strain calculation 380–87
montmorillonite, electrical property testing 283, 284
multidimensional scaling 218–21
multivalency and fuzzy logic 241–5
multivariate analysis
 defined 181
 techniques classified 183
natural similarity in cluster analysis 235
Nernst-Einstein relationship 267
Nernst-Hartley equation 268
Ness Formation
 bulk density by mineral inversion 147–9
 porosity by mineral inversion 150–1
 velocity logs 94–102
network analogues see pore-scale models
network models and tortuosity 318–21
neural nets/networks 245–7
 see also artificial neural networks (ANN)
neurons, operation of 170
non-contacting resistivity imaging 1–10
 theory of method 2
normative and modal mineralogy 142
North Sea studies
 Brent Group core logs 188, 189, 226, 227
 bulk density measures 147–9
 fluid flow in Rotliegenden 1
 porosity measures 150–1
 porosity-permeability correlation 53
 velocity logs 94–102
nuclear magnetic resonance (NMR)
 method 51–3
 use in diffusion studies 316–17
 use in permeability measurement 58–62
ocean crust
 bulk density by mineral inversion 151–3
 magnetic susceptibility by mineral inversion 154–5
 Ontong Java Plateau borehole 174–6
 seismic attenuation 368–9
 seismic modelling 367–8
ophiolite complexes, seismic properties 367
ores, prospecting for 287
Oseberg Formation, velocity logs 94–102
P waves see waves
pad contact loss in horizontal wellbores 359–61
partitioning methods in cluster analysis 235
Penrith Sandstone
description 381
strain measurement 380–7
wave velocity attenuation under stress 70–84
percolation threshold 22
permeability
 formation permeability 287
 in Archie’s Law 160
 measurement methods 160–2
 from apparent formation factor 165–6
 from porosity 162–5
 need for quality assurance 159–60
 microlithic enclaves 41–3
 relation to crack density 77, 78–84
 relation to P wave velocity 122
 relation to Porosity 53
 relation to tortuosity 330–1
 role in attenuation 126–9
permeameters 11–17
petrography and pore geometry measurement 49
petrophysical data partitioning
 data computation
 bivalency and crisp logic 241–5
 canonical correlation 211–18
 characteristic analysis 233–4
 cluster analysis 234–9
 correspondence analysis 210–11
 crossplots 195–6
 discriminant function analysis 223–32
 factor analysis 200–9
 genetic algorithms 247–50
 Hough transform 196–7
 kernel density estimation 239–41
 matrix eigenvalues 194–5
 multidimensional scaling 218–21
 multivalency and fuzzy logic 241–5
petrophysical data partitioning, data computation

vester (continued)
neural nets 245-7
pigeon-holing 232-3
principal components analysis 197-200
projection pursuit 222-3
data management
classification 183
continuous v. discrete data 184-5
depth control problems 183
environmental effects 183
multivariate normal distribution 190-2
resolution/blocking problems 184
similarity-dissimilarity measures 192-4
variance-covariance matrix 185-7
petrophysical rock types, defined 181
PGE concept 287
physical models, see clay-sand mixture modelling
Poisson-Boltzmann equation 255
polarization 277, 281, 287
induced polarization (IP) phenomena 287
modelling 288-95
polyaxial stress loading system 70-2
use in sandstone testing 72-84
pore fluids
relation to tensile strength 119
role in attenuation of 125-6
pore geometry
importance of 47-8
methods of measuring 53
backscattered electron imaging 49-50
mercury injection capillary pressure 50-1
nuclear magnetic resonance 51-3
petrographic 49
relation to permeability 53-4
backscattered electron imaging 56-8
mercury injection capillary pressure 54-6
nuclear magnetic resonance 58-62
sandstone 48-9
pore size distribution, effect on flow 303, 305
pore space formation factor 262, 266
pore structures in enclaves
2D 39-41
3D 43
pore-form 48
pore-scale models, use in wettability testing,
see wettability
porosity
in Archie's law 160
artificial neural network predictions 172, 173, 174, 175
derived from mineral inversion
evaluation of method 145-6
testing of method 147-9, 151-3
relation to permeability 53, 160, 162-5
relation to seismic attenuation 373
relation to wave dispersion 90-2
relation to wave velocity 88-90, 122, 135-6
porosity log, Brent Group 189
porous media
electrical conductivity of 261-2
factors affecting 262-5
Hittorf transport numbers 265-6
porous rock, network models of 318
pressure, effect on attenuation 123
principal components analysis 197-200
probability of occurrence 185
probe permeameters
instrument design 14-15
limitations of 11-12
operation 15
practicalities 12-14
test results 16-17
projection pursuit 222-3
pyrite 283, 284, 287
Q mode in partitioning petrophysical data 203
quality assurance in permeability measures 159-60
quality factor (Q) 121, 368, 372
limestone 124-5
permeability crossplots 126-9
sandstone and shale 123-4
R mode in partitioning petrophysical data 203
random walk models 311, 317
Rannoch Formation
bulk density by mineral inversion 147-9
porosity by mineral inversion 150-1
relaxation time constant 281
reservoir characterization see pore geometry
formation 305
resistivity 278, 281
formation factor 160, 327
silicates 277
uses of 287
resistivity imaging I-2, 347-9
apparent formation factor 161-2
as permeability predictor 165-6
resolution, problems of scale 184
Rotliegendes, fluid flow in 1
S waves, see waves
sandstone
electrical property testing 283, 284
pore geometry 48-9
quality factor for P waves 123-4, 126-7
wave velocity attenuation under stress
method of measurement 70-2
results 72-84
schistosity and tensile strength 118-19
scree plot 199, 200, 204
seismic imaging techniques 121
seismic waves, see waves
self diffusion coefficient 267
shale
electrical property testing 283, 284
quality factor for P waves 123-4, 126-7
shear modulus, role in modelling wave velocities 92-4
shear waves, see waves
Sherwood Sandstone, porosity 162
similarity-dissimilarity measures 192-4
slip flow 310
smectite 283, 284
specific surface conductance 255
spider's web plots 195
standardization of data 187-92
star diagrams 195
Stern layer 254
INDEX

Stern plane 254, 259
Stern potential 254, 257
stick plots 195
strain in hoop tension test 376
 measurement in Penrith Sandstone
 method 380–3
 results 383–7
streaming potential 271
stress loading system, see polyanal stress
 loading system
stress patterns in hoop tension test 376
 Penrith Sandstone 386–7
surface electrical properties
 diffuse layer ion densities 255–7
 internal surface ion densities 254
porous media
 effective conductivity 261–2
 factors affecting 262–5
 Hittorf transport numbers 265–6
quartz-electrolyte system 259–61
 electrolyte reaction 258–9
 Stern plane potential 259
 surface reaction 257–8
surface formation factor 262
surface electrical properties
 diffuse layer ion densities 255–7
 internal surface ion densities 254
pores media
 effective conductivity 261–2
 factors affecting 262–5
 Hittorf transport numbers 265–6
quartz-electrolyte system 259–61
 electrolyte reaction 258–9
 Stern plane potential 259
 surface reaction 257–8
surface formation factor 262
Tarbert Formation
 bulk density by mineral inversion 147–9
 icon plots 196–7
 porosity by mineral inversion 150–1
tensile strength tests
 methods 108
 hoop tension test
 method 114–15
 results 115–17
 ultrasonic wave test
 method 108–10
 results 111–14
 tests discussed 117–19
tension, rock behaviour under
 study of gneiss
 hoop tension test 114–17
 rock description 108
 sampling method 108
 tests discussed 117–19
 ultrasonic wave test 108–14
thermochemical effect 271–2
thermolectric potential 271–3
thermoelectrokinetic effect 272–3
topology, applied to networks 317–18
tortuosity
 concept evaluation 333–4
 defined 300
 dielectrical 314–17
 electrical 305–7
 geometrical 300
 hydraulic 300–5
 measure of flow efficiency 327–9
 measures compared
 diffusional-electrical 321–4
 electrical-hydraulic 324–7
 in networks 318–21
 relation to pore space formation factor 262
 relation to surface formation factor 262
 role in diffusion 307–13
 role in dispersion 313–14
 role in multiphase flow 317
 role in wave propagation 316
 use of NMR in measurement 316–17
 transformation of data 187–92
 ultrasonic waves, see waves
 undulating bedding, in horizontal wellbores 355
 unrolled images, data presentation as 5–7, 345–9
 USBM indices 19
viscosity, role in diffusive flow 309
water content, artificial neural network predictions
 172, 173, 174, 175
water saturation, artificial neural network predictions
 177, 178, 179
waves
 attenuation
 components of 368
 multiple backscattering model 369
 limitations of 369–70
 results 371–3
 results discussed 373–4
 theory 369
 quantification of 368–9
 relation to stress
 method of measurement 70–2
 results 72–84
 reservoir rock study
 methods of measurement 122–3
 pore fluids, role of 125–6
 pressure effects 123
 limestone 124–5
 sandstone and shale 123–4
 Q-factor-permeability crossplots 126–9
 propagation and pore structure 316
 velocity
 dispersion 90–2
 modelling in relation to frame moduli 92–94
 modelling in relation to porosity 88–90, 122
 relation with differential pressure
 experimental data 136–8
 modelling 135–6
 theory 131–5
 relation to tensile strength
 method 108–10
 results 111–14
 wettability
 effect on velocity 135–6
 factors affecting 19–20
 pore scale modelling 22
 cycles stages 23–5
 water flood recovery predictions 31–4